Please see below publications within the agri-food robotics sector, by AgriFoRwArdS CDT Staff and Students, published since the set up of the CDT.
University of Lincoln
Gao, X., Xue, W., Lennox, C., Stevens, M., & Gao, J. (2024) Developing a hybrid convolutional neural network for automatic aphid counting in sugar beet fields, Computers and Electronics in Agriculture, 220, 108910.
Waltham, C., Perrett, A., Soni, R., & Fox, C. (2024) R4: rapid reproducible robotics research open hardware control system, arXiv pre-print.
Carter, S., Tsagkopoulos, N.C., Clawson, G., & Fox, C. (2023) OpenScout: Open Source Hardware Mobile Robot, Journal of Open Hardware, 7(1), pp. 9.
Heselden, J., & Das, G. (2023) Heuristics and Rescheduling in Prioritised Multi-Robot Path Planning: A Literature Review, Machines, 11(11), 1033.
Hurst, B., Bellotto, N., & Bosilj, P. (2023) An Assessment of Self-supervised Learning for Data Efficient Potato Instance Segmentation, Towards Autonomous Robotic Systems. TAROS 2023: Lecture Notes in Computer Science, 14136, pp. 267-278. Springer, Cham.
Gao, X., Xue, W., Lennox, C., Stevens, M., & Gao, J. (2023) Advancing Early Detection of Virus Yellows: Developing a Hybrid Convolutional Neural Network for Automatic Aphid Counting in Sugar Beet Fields, arXiv pre-print.
Ravikanna, R., Heselden, J., Arshad Khan, M., Perrett, A., Zhu, Z., Das, G., & Hanheide, M. (2023) Smart Parking System Using Heuristic Optimization for Autonomous Transportation Robots in Agriculture. Towards Autonomous Robotic Systems. TAROS 2023: Lecture Notes in Computer Science, 14136, pp. 38-50. Springer, Cham.
Davy, J., & Fox, C. (2023) Simultaneous Base and Arm Trajectories for Multi-target Mobile Agri-Robot. Towards Autonomous Robotic Systems. TAROS 2023: Lecture Notes in Computer Science, 14136, pp. 214-226. Springer, Cham.
Vayakkattil, S., Cielniak, G. & Calisti, M. (2023) Plant Phenotyping Using DLT Method: Towards Retrieving the Delicate Features in a Dynamic Environment. Towards Autonomous Robotic Systems. TAROS 2023: Lecture Notes in Computer Science, 14136, pp. 3–14. Springer, Cham.
Nazari, K., Gandolfi, G., Talebpour, Z., Rajendran, V., Mandil, W., Rocco, P., & Ghalamzan-E., A (2023) Deep Functional Predictive Control (deep-FPC):
Robot Pushing 3-D Cluster using Tactile Prediction, Research Gate pre-print.
Darbyshire, M., Sklar, E., & Parsons, S. (2023) Hierarchical Mask2Former: Panoptic Segmentation of Crops, Weeds and Leaves, Research Gate pre-print.
Le Louëdec, J., & Cielniak, G. (2023) Key Point-Based Orientation Estimation of Strawberries for Robotic Fruit Picking. Computer Vision Systems. ICVS 2023. Lecture Notes in Computer Science, 14253, pp. 148–158. Springer, Cham.
Wagener, N., & Cielniak, G. (2023) Vision-based Monitoring of the Short-term Dynamic Behaviour of Plants for Automated Phenotyping. Research Gate pre-print.
Mandil, W., Rajendran, V., Nazari, K., & Ghalamzan Esfahani, A. (2023) Tactile-Sensing Technologies: Trends, Challenges and Outlook in Agri-Food Manipulation. Sensors, 23(17), pp. 7362.
Cox, J., Tsagkopoulos Nikolaos., Rozsypálek, Z., Krajník, T., Sklar, E., & Hanheide, M. (2023) Visual teach and generalise (VTAG)—Exploiting perceptual aliasing for scalable autonomous robotic navigation in horticultural environments. Computers and Electronics in Agriculture, 212(2023), pp. 108054.
Rajendran S.V., Mandil, W., Parsons, S., & Ghalamzan Esfahani, A. (2023) Acoustic Soft Tactile Skin (AST Skin). arXiv:2303.17355 [cs.RO].
Heiwolt, K., Öztireli, C., & Cielniak, G. (2023) Statistical shape representations for temporal registration of plant components in 3D. IEEE International Conference on Robotics and Automation (ICRA), London, United Kingdom, 2023, pp. 9587-9593.
Mandil, W., & Ghalamzan Esfahani, A. (2023) Combining Vision and Tactile Sensation for Video Prediction. arXiv:2304.11193 [cs.RO].
Camacho-Villa, T.C., Zepeda-Villarreal, E.A., Díaz-José, J., Rendon-Medel, R., & Govaerts, B. (2023) The contribution of strong and weak ties to resilience: The case of small-scale maize farming systems in Mexico. Agricultural Systems, 210(2023), pp. 103716.
Martindale, W., & Hollands, T. (2023) A Vision of the Food System, 2045 CE: Materiality Methods Can Define What Is Resilient and Critical. Engineering Proceedings, 40(1), pp. 23.
Parsa, S., Debnath, B., Arshad Khan, M., & Ghalamzan Esfahani, A. (2023) Modular autonomous strawberry picking robotic system. Journal of Field Robotics, Early View.
Cox, J., Li, X., Fox, C., & Coutts, S. (2023) Black-grass (Alopecurus myosuroides) in cereal multispectral detection by UAV. Weed Science, pp. 1-28.
Guevara, L., Hanheide, M., & Parsons, S. (2023) Implementation of a human-aware robot navigation module for cooperative soft-fruit harvesting operations. Journal of Field Robotics, Early View.
Benos, L., Moysiadis, V., Kateris, D., Tagarakis, A.C., Busato, P., Pearson, S., & Bochtis, D. (2023) Human–Robot Interaction in Agriculture: A Systematic Review. Sensors 2023, 23(15) pp. 6776.
Rajendran Sugathakumary, V., Debnath, B., Mghames, S., Mandil, W., Parsa, S., Parsons, S., & Ghalamzan Esfahani, A. (2023) Selective Harvesting Robots: A Review. Journal of Field Robotics, ISSN 1556-4959.
Rajendran, V., Debnath, B., Mghames, S., Mandil, W., Parsa, S., Parsons, S., & Ghalamzan Esfahani, A. (2023) Towards autonomous selective harvesting: A review of robot perception, robot design, motion planning and control. Journal of Field Robotics, Early View.
Perrett, A., Pollard, H., Schofield, M., Qie, L., Bosilj, P., & Brown, J. (2023) DeepVerge: Classification of roadside verge biodiversity and conservation potential. Computers, Environment and Urban Systems, 102(2023), pp. 101968.
Hall, R.J., Wei, H.L., Pearson, S., Ma, Y., Hang, S., & Hanna, E. (2023) Complex systems modelling of UK winter wheat yield. Computers and Electronics in Agriculture, 209(2023), pp. 107855.
Onoufriou, G., Hanheide, M., & Leontidis, G. (2023) Premonition Net, a multi-timeline transformer network architecture towards strawberry tabletop yield forecasting. Computers and Electronics in Agriculture, 208(2023), pp. 107784.
Pearson, S., Brewer, S., Manning, L., Bidaut, L., Onoufriou, G., Durrant, A., Leontidis, G., Jabbour, C., Zisman, A., Parr, G., Frey, J., & Maull, R. (2023) Decarbonising our food systems: contextualising digitalisation for net zero. Frontiers in Sustainable Food Systems, 7(2023).
Gao, X. (2023) Artificial Intelligence and aphid counting. Sugar Beet Review, 91(2), pp. 30-31.
Darbyshire, M., Salazar-Gomez, A., Lennox, C., Gao, J., Sklar, E., & Parsons, S. (2022). Localising Weeds Using a Prototype Weed Sprayer. UKRAS22 Conference “Robotics for Unconstrained Environments” Proceedings, 12-13.
Mandil, W., Nazari, K., & Esfahani, A. G (2022) Action Conditioned Tactile Prediction: a case study on slip prediction. The Robotics: Science and Systems (RSS) 2022.
Mayoral Baños, J.C., From, P.J., & Cielniak, G. (2023). Towards Safe Robotic Agricultural Applications: Safe Navigation System Design for a Robotic Grass-Mowing Application through the Risk Management Method. Robotics, 12(3).
Craigon, P.J., Sacks, J., Brewer, S., Frey, J., Gutierrez, A., Jacobs, N., Kanza, S., Manning, L., Munday, S., Wintour, A., & Pearson, S., (2023). Ethics by design: Responsible research & innovation for AI in the food sector. Journal of Responsible Technology, 13(2023), pp. 100051.
Manning, L., Brewer, S., Craigon, P. , Frey, J., Gutierrez, A., Jacobs, N., Kanza, S., Munday, S., Sacks, J. and Pearson, S. (2023) Reflexive governance architectures: considering the ethical implications of autonomous technology adoption in food supply chains. Trends in Food Science & Technology, 133, pp. 114-126. ISSN 0924-2244
Qi, C., Sandroni, M., Westergaard, J.C., Høegh Riis Sundmark, E., Bagge, M., Alexandersson, E. and Gao, J. (2023) In-field classification of the asymptomatic biotrophic phase of potato late blight based on deep learning and proximal hyperspectral imaging. Computers and Electronics in Agriculture, 205. ISSN 01681699
Wichitwechkarn, V., and Fox, C. (2023) ‘MACARONS: A Modular and Open-Sourced Automation System for Vertical Farming‘. Journal of Open Hardware, 7 (1). ISSN 2514-1708.
Harman, H., and Sklar, E. (2022) Multi-agent Task Allocation for Fruit Picker Team Formation (Extended Abstract). In: The 21st International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2022).
Clawson, G., & Fox, C. (2022) Blockchain Crop Assurance and Localisation. UKRAS22 Conference “Robotics for Unconstrained Environments” Proceedings, 10-11.
Owen, A., Harman, H., & Sklar, E.(2022) Towards Autonomous Task Allocation Using a Robot Team in a Food Factory. UKRAS22 Conference “Robotics for Unconstrained Environments” Proceedings, 82-83.
Pearson, S., Camacho‑Villa, C,. Valluru, R., Gaju, O., Rai, M., Gould, I., Brewer, S., and Sklar, E. (2022) Robotics and Autonomous Systems for Net Zero Agriculture. Current Robotics Reports, 3 . pp. 57-64. ISSN 2662-4087
Harman, H., and Sklar, E. (2022) Multi-Agent Task Allocation Techniques for Harvest Team Formation. In: Advances in Practical Applications of Agents, Multi-Agent Systems, and Complex Systems Simulation. The PAAMS Collection, 13th-15th July 2022, Italy.
Ghalamzan Esfahani, A., Das, G., Gould, I., Zarafshan, P., Rajendran Sugathakumary, V., Heselden, J., Badiee, A., Wright, I., and Pearson, S. (2022) Applications of robotic and solar energy in precision agriculture and smart farming. In: Solar Energy Advancements in Agriculture and Food Production Systems. Elsevier. ISBN 9780323898669, 9780323886253
De Silva, R., Cielniak, G., and Gao, J. (2022) Towards Infield Navigation: leveraging simulated data for crop row detection. In: IEEE International Conference on Automation Science and Engineering (CASE).
Pal, A., Das, G., Hanheide, M., Leite, A.C., and From, P. (2022) An Agricultural Event Prediction Framework towards Anticipatory Scheduling of Robot Fleets: General Concepts and Case Studies. Agronomy, 12 (6). ISSN 2073-4395.
Owen, A., Harman, H., and Sklar, E. (2022) Towards the Application of Multi-Agent Task Allocation to Hygiene Tasks in the Food Production Industry. Highlights in Practical Applications of Agents, Multi-Agent Systems, and Complex Systems Simulation. The PAAMS Collection. PAAMS 2022. Communications in Computer and Information Science, vol. 1678, pp. 5-16. Springer, Cham.
Pearson, S., Camacho‑Villa, C., Valluru, R., Oorbessy, G., Rai, M., Gould, I., Brewer, S., and Sklar, E. (2022) Robotics and Autonomous Systems for Net Zero Agriculture. AGRICULTURE ROBOTICS Current Robotics Reports, 3 . pp. 57-64.
Li, X., Lloyd, R., Ward, S., Cox, J., Coutts, S. and Fox, C. (2022) Robotic crop row tracking around weeds using cereal-specific features. Computers and Electronics in Agriculture, 197 . ISSN 0168-1699
Harman, H., and Sklar, E. (2022) Challenges for Multi-Agent Based Agricultural Workforce Management. In: The 23rd International Workshop on Multi-Agent-Based Simulation (MABS)).
Manning, L., Brewer, S., Craigon, P., Frey, P.J., Gutierrez, A., Jacobs, N., Kanza, S., Munday, S., Sacks, J., and Pearson, S. (2022) Artificial intelligence and ethics within the food sector: developing a common language for technology adoption across the supply chain. Trends in Food Science and Technology . ISSN 0924-2244
Foster, J., Gudelis, M., Ghalamzan Esfahani, A. (2022) Robotic Perception in Agri-food Manipulation: A Review. arXiv:2208.10580 [cs.RO] pre-print.
Choi, T., Would, O., Salazar-Gomez, A., and Cielniak, G. (2022) Self-supervised Representation Learning for Reliable Robotic Monitoring of Fruit Anomalies. In: 2022 IEEE International Conference on Robotics and Automation (ICRA), 23-27 May 2022, Philadelphia (PA), USA.
Choi, T., and Cielniak, G. (2022) Channel Randomisation with Domain Control for Effective Representation Learning of Visual Anomalies in Strawberries. In: AI for Agriculture and Food Systems, 28-2-2022, Virtual.
Montes, H.A., and Cielniak, G. (2022) Multiple broccoli head detection and tracking in 3D point clouds for autonomous harvesting. In: AAAI – AI for Agriculture and Food Systems.
Qi, C., Gao, J., Chen, K., Shu, L., and Pearson, S. (2022) Tea Chrysanthemum Detection by Leveraging Generative Adversarial Networks and Edge Computing. Frontiers in plant science . ISSN 1664-462X
Qi, C., Gao, J., Pearson, S., Harman, H., Chen, K., and Shu, L. (2022) Tea chrysanthemum detection under unstructured environments using the TC-YOLO model. Expert Systems with Applications, 193 . ISSN 0957-4174
Ravikanna, R., Hanheide, M., Das, G., and Zhu, Z. (2021). Maximising availability of transportation robots through intelligent allocation of parking spaces. TAROS2021, November 2021.
Heselden, J., & Das, G. (2021) CRH*: A Deadlock Free Framework for Scalable Prioritised Path Planning in Multi-robot Systems. Towards Autonomous Robotic Systems. TAROS 2021. Lecture Notes in Computer Science, vol.13054, pp. 66-75. Springer, Cham.
Heiwolt, K., Duckett, T., & Cielniak, G. (2021) Deep Semantic Segmentation of 3D Plant Point Clouds. Towards Autonomous Robotic Systems. TAROS 2021. Lecture Notes in Computer Science, vol.13054, pp. 36-45. Springer, Cham.
Ravikanna, R., & Millard, A. (2021) Task Allocation with Manipulative Dynamic Auctioneering for Multi Robot Systems. UKRAS21 Conference: “Robotics at home” Proceedings, 45-46.
Harman, H., and Sklar, E. (2021). A Practical Application of Market-based Mechanisms for Allocating Harvesting Tasks. In 19th International Conference on Practical Applications of Agents and Multi-Agent Systems, October 2021. Springer.
Ferguson, J.N., Fernandes, S.B., Monier, B., Miller, N.D., Allen, D., Dmitrieva, A., Schmuker, P., Lozano, R., Valluru, R., Buckler, E.S., Gore, M.A., Brown, P.J., Spalding, E.P., and Leakey, A.D.B. (2021). Machine learning-enabled phenotyping for GWAS and TWAS of WUE traits in 869 field-grown sorghum accessions. Plant Physiology. July 2021.
Nazari, K., Mandil, W., Hanheide, M. & Esfahani, A. G. (2021) Tactile Dynamic Behaviour Prediction Based on Robot Action. Towards Autonomous Robotic Systems (TAROS 2021). Lecture Notes in Computer Science, vol. 13054. Springer, Cham.
Dai, D., Gao, J., Parsons, S., and Sklar, E. (2021). Small datasets for fruit detection with transfer learning. UKRAS21 Conference: Robotics at home Proceedings, 5–6. July 2021.
Polvara, R., Duchetto, F.D., Neumann, G., and Hanheide, M. (2021). Navigate-and-Seek: a Robotics Framework for People Localization in Agricultural Environments. IEEE Robotics and Automation Letters,1–1. July 2021.
Clawson, G., Rogers, H., Dawson, B., & Fox, C. (2021) Extending an Open Source Hardware Agri-Robot with Simulation and Plant Re-identification. Oxford AIMS Conference 2021. Research Gate.
Gong, L., Yu, M., Jiang, S., Cutsuridis, V., and Pearson, S. (2021). Deep Learning Based Prediction on Greenhouse Crop Yield Combined TCN and RNN. Sensors, 21(13): 4537. July 2021.
Badiee, A., Wallbank, J.R., Fentanes, J.P., Trill, E., Scarlet, P., Zhu, Y., Cielniak, G., Cooper, H., Blake, J.R., Evans, J.G., Zreda, M., Markus, K. and Pearson, S. (2020). Using Additional Moderator to Control the Footprint of a COSMOS Rover for Soil Moisture Measurement. Water Resources Research, 57(6): e2020WR028478. June 2021
Hussain, A., Govaerts, B., Negra, C., Villa, T.C.C., Suarez, X.C., Espinosa, A.D., Fonteyne, S., Gardeazabal, A., Gonzalez, G., Singh, R.G., Kommerell, V., Kropff, W., Saavedra, V.L., Lopez, G.M., Odjo, S., Rojas, N.P., Ramirez-Villegas, J., Loon, J.V., Vega, D., Verhulst, N., Woltering, L., Jahn, M., and Kropff, M. (2021). One CGIAR and the Integrated Agri-food Systems Initiative: From short-termism to transformation of the world’s food systems. PLOS ONE, 16(6): e0252832. June 2021.
Guevara, L., Khalid, M., Hanheide, M., and Parsons, S. (2021). Assessing the probability of human injury during UV-C treatment of crops by robots. In 4th UK-RAS Conference, June 2021. UK-RAS
Zhivkov, T., Gomez, A., Gao, J., Sklar, E., and Parsons, S. (2021). The need for speed: How 5G communication can support AI in the field. In EPSRC UK-RAS Network (2021). UKRAS21 Conference: Robotics at home Proceedings, pages 55–56, June 2021. UK-RAS.
Rose, D.C., Lyon, J., de Broon, A., Hanheide, M., and Pearson, S. (2021). Responsible Development of Autonomous Robots in Agriculture. Nature Food, 2(5): 306–309. May 2021.
Mayoral, J.C., Grimstad, L., From, P.J., and Cielniak, G. (2021). Integration of a Human-aware Risk-based Braking System into an Open-Field Mobile Robot. In IEEE International Conference on Robotics and Automation (ICRA), May 2021. IEEE
Wagner, N., Kirk, R., Hanheide, M., and Cielniak, G. (2021). Efficient and Robust Orientation Estimation of Strawberries for Fruit Picking Applications. In IEEE International Conference on Robotics and Automation (ICRA), May 2021. IEEE
Gomez, A.S., Aptoula, E, Parsons, S., and Bosilj, P. (2021). Deep Regression versus Detection for Counting in Robotic Phenotyping. IEEE Robotics and Automation Letters, 6(2): 2902–2907. April 2021.
Swann, K, Hadley, P, Hadley, M.A., Pearson, S., Badiee, A., and Twitchen, C. (2021). The effect of light intensity and duration on yield and quality of everbearer and June-bearer strawberry cultivars in a LED lit multi-tiered vertical growing system. In IX International Strawberry Symposium, pages 359–366, April 2021.
Gao, J., Westergaard, J.C., Sundmark, E.H.R., Bagge, M., Liljeroth, E., and Alexandersson, E. (2021). Automatic late blight lesion recognition and severity quantification based on field imagery of diverse potato genotypes by deep learning. Knowledge-Based Systems, 214: 106723. February 2021.
Lujak, M., Sklar, E., and Semet, F. (2021). Agriculture fleet vehicle routing: A decentralised and dynamic problem. AI Communications, 34(1): 55–71. February 2021.
Mghames, S., Hanheide, M., and Esfahani, A. G. (2021). Interactive Movement Primitives: Planning to Push Occluding Pieces for Fruit Picking. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), February 2021.
Jagtap, S., Duong, L., Trollman, H., Bader, F., Garcia-Garcia, G., Skouteris, G., Li, J., Pathare, P., Martindale, W., Swainson, M., and Rahimifard, S. (2021). IoT technologies in the food supply chain. In Galanakis, C., editor(s), Food Technology Disruptions. Elsevier, January 2021.
Harman, H., and Sklar, E. (2021). Auction-based Task Allocation Mechanisms for Managing Fruit Harvesting Tasks. In UKRAS21, pages 47–48, 2021.
Hroob, I., Polvara, R., Mellado, S.M., Cielniak, G., and Hanheide, M. (2021). Benchmark of visual and 3D lidar SLAM systems in simulation environment for vineyards. In Towards Autonomous Robotic Systems Conference (TAROS), 2021.
Heiwolt, K., Mandil, W., Cielniak, G., & Hanheide, M. (2020). ‘Automated Topological Mapping for Agricultural Robots‘, UKRAS20 Conference: “Robots into the real world” Proceedings.
Duong, L.N., Al-Fadhli, M., Jagtap, S., Bader, F., Martindale, W., Swainson, M., and Paoli, A. (2020). A review of robotics and autonomous systems in the food industry: From the supply chains perspective. Trends in Food Science & Technology, 106: 355–364. December 2020.
Rogers, H., Fox, C. (2020) An Open Source Seeding Agri-Robot. UKRAS20 Conference: “Robots into the real world” Proceedings, pp. 48-50.
Thota, M., Swainson, M., Kollias, S., and Leontidis, G. (2020). Multi-Source Domain Adaptation for Quality Control in Retail Food Packaging. Computers in Industry, 123: 103293. December 2020.
Khan, W., Das, G., Hanheide, M., and Cielniak, G. (2020). Incorporating Spatial Constraints into a Bayesian Tracking Framework for Improved Localisation in Agricultural Environments. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, October 2020. IEEE
Montes, H., Louedec, J.L., Cielniak, G., and Duckett, T. (2020). Real-time detection of broccoli crops in 3D point clouds for autonomous robotic harvesting. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 10483–10488, October 2020. IEEE/RSJ
Ge, Y., Xiong, Y., and From, P. (2020). Symmetry-based 3D shape completion for fruit localisation for harvesting robots. Biosystems Engineering, 197: 188–202. September 2020.
Ponnambalam, V.R., Bakken, M., Moore, R.J.D., Gjevestad, J.G.O., and From, P. (2020). Autonomous Crop Row Guidance Using Adaptive Multi-ROI in Strawberry Fields. Sensors, 20(18): 5249. September 2020.
Xiong, Y., Ge, Y., and From, P. (2020). An obstacle separation method for robotic picking of fruits in clusters. Computers and Electronics in Agriculture, 175: 105397. August 2020.
Martindale, W., Duong, L., Hollands, T., and Swainson, M. (2020). Testing the data platforms required for the 21st century food system using an industry ecosystem approach. Science of The Total Environment, 724. July 2020.
Louedec, J.L., Montes, H.A., Duckett, T., and Cielniak, G. (2020). Segmentation and detection from organised 3D point clouds: a case study in broccoli head detection. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pages 285–293, June 2020. IEEE
Ponnambalam, V.R., Fentanes, J.P., Das, G., Cielniak, G., Gjevestad, J.G.O., and From, P. (2020). Agri-Cost-Maps ? Integration of Environmental Constraints into Navigation Systems for Agricultural Robot. In 6th International Conference on Control, Automation and Robotics (ICCAR), April 2020. IEEE
Li, X., Fox, C., and Coutts, S. (2020). Deep learning for robotic strawberry harvesting. In UKRAS20, pages 80–82, April 2020. UK-RAS
Louedec, J.L., Li, B., and Cielniak, G. (2020). Evaluation of 3D Vision Systems for Detection of Small Objects in Agricultural Environments. In The 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, February 2020. SciTePress
Kirk, R., Mangan, M., and Cielniak, G. (2020). Feasibility Study of In-Field Phenotypic Trait Extraction for Robotic Soft-Fruit Operations. In UKRAS20 Conference: ?Robots into the real world? Proceedings, pages 21–23, February 2020. UKRAS
Xiong, Y., Ge, Y., Grimstad, L., and From, P. (2020). An autonomous strawberry harvesting robot: Design, development, integration, and field evaluation. Journal of Field Robotics, 37(2): 202–224. February 2020.
Fentanes, J.P., Badiee, A., Duckett, T., Evans, J., Pearson, S., and Cielniak, G. (2020). Kriging based robotic exploration for soil moisture mapping using a cosmic ray sensor. Journal of Field Robotics, 37(1): 122–136. January 2020.
Kirk, R., Cielniak, G., and Mangan, M. (2020). L*a*b*Fruits: A Rapid and Robust Outdoor Fruit Detection System Combining Bio-Inspired Features with One-Stage Deep Learning Networks. Sensors, 20(1): 275. January 2020.
Bosilj, P., Aptoula, E., Duckett, T., and Cielniak, G. (2020). Transfer learning between crop types for semantic segmentation of crops versus weeds in precision agriculture. Journal of Field Robotics, 37(1): 7–19. January 2020.
Gong, L., Thota, M., Yu, M., Duan, W., Swainson, M., Ye, X., and Kollias, S. (2020). A novel unified deep neural networks methodology for use by date recognition in retail food package image. Signal, Image and Video Processing. 2020.
Jagtap, S., Duong, L., Trollman, H., Bader, F., Garcia-Garci, G., Skouteris, G., Li, J., Pathare, P., Martindale, W., Swainson, M., and Rahimifard, S. (2020). IoT technologies in the food supply chain. In Food Technology Disruptions. Elsevier, 2020.
Millard, A., Ravikanna, R., Groß, R., & Chesmore, D. (2019) Towards a Swarm Robotic System for Autonomous Cereal Harvesting. Towards Autonomous Robotic Systems. TAROS 2019. Lecture Notes in Computer Science, vol. 11650, pp. 458-461. Springer, Cham.
University of Cambridge
Sochacki, G., Zhang, X., Abdulali, A., & Iida, F. (2024) Towards practical robotic chef: Review of relevant work and future challenges, Journal of Field Robotics, early access.
Foster, J., Fogarty, K., Schoepf, S., Oztireli, A.C., & Brintrup, A. (2024) Zero-Shot Machine Unlearning at Scale via Lipschitz Regularization, arXiv pre-print.
Foster, J., Schoepf, S., & Brintrup, A. (2024) Loss-Free Machine Unlearning, arXiv pre-print.
Foster, J., Schoepf, S., & Brintrup, A. (2023) Fast Machine Unlearning Without Retraining Through Selective Synaptic Dampening, arXiv pre-print.
Zhou, C., Zhong, F., Hanji, P., Guo, P., Fogarty, K. Sztrajman A., Gao, H., & Oztireli, A.C. (2023) FrePolad: Frequency-Rectified Point Latent Diffusion for Point Cloud Generation, arXiv pre-print.
Foster, J., & Brintrup, A. (2023) Aiding food security and sustainability efforts through graph neural network-based consumer food ingredient detection and substitution, Scientific Reports, 13, 18809.
Foster, J., & Brintrup, A. (2023) Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization, Research Gate pre-print.
Matsantonis, C., & Lasenby, J. (2023) A Geometric Algebra Solution to the 3D Registration Problem, Towards Autonomous Robotic Systems. TAROS 2023: Lecture Notes in Computer Science, 14136. Springer, Cham.
Trimble, R., & Fox, C. (2023) Skid-steer friction calibration protocol for digital twin creation, Towards Autonomous Robotic Systems. TAROS 2023: Lecture Notes in Computer Science, 14136. Springer, Cham.
Iida, F., Maiolina, P., Abdulali, A., & Wang, M. (2023) Towards Autonomous Robotic Systems: 24th Annual Conference, TAROS 2023, Cambridge, UK, September 13–15, 2023, Proceedings. Springer Nature.
Almanzor, E., Birell, S., & Iida, F. (2023) Rapid Development and Performance Evaluation of a Potato Planting Robot. Towards Autonomous Robotic Systems. TAROS 2023: Lecture Notes in Computer Science, 14136, pp. 15–25. Springer, Cham.
Shi, J., Abdulali, A., Sochacki, G., & Iida, F. (2023) Closed-Loop Robotic Cooking of Soups with Multi-modal Taste Feedback. Towards Autonomous Robotic Systems. TAROS 2023: Lecture Notes in Computer Science, 14136, pp. 51–62. Springer, Cham.
Zuercher, P.J., Bohné, T., & Hanheide, M. (2023) Augmenting Strawberry Agronomy: From Systematic Literature Review to Value Flow Map⋆, Pre-print.
Baikie, T.K., Wey, L.T., Medipally, H., Nowaczyk, M.M., Friend, R.H., Howe, C.J., Schnedermann, C., Rao, A., & Zhang, J. (2023) Photosynthesis re-wired on the pico-second timescale. arXiv:2201.13370 [physics.bio-ph].
Molloy, B., Baum, T., & Eves-van den Akker, S. (2023) Unlocking the development- and physiology-altering ‘effector toolbox’ of plant-parasitic nematodes. Opinion, 39(9), pp. 732-738.
Conti, Z.X., Ward, R., & Choudhary, R. (2023) Energy Modelling and Forecasting for an Underground Agricultural Farm using a Higher Order Dynamic Mode Decomposition Approach. arXiv:2306. 15089 [cs.LG].
Rohde, W., & Forni, F. (2023) Lettuce modelling for growth control in precision agriculture. European Journal of Control, 2023, 100843, ISSN 0947-3580.
Sochacki, G., Abdulali, A., Khadem Hosseini, N., & Iida, F. (2023) Recognition of Human Chef’s Intentions for Incremental Learning of Cookbook by Robotic Salad Chef. IEEE Access, vol. 11, pp. 57006-57020, 2023.
Clawson, G. (2023) Applications of Distributed Ledger Technologies in Robotics. 2023 IEEE/SICE International Symposium on System Integration (SII).
Moncur, B., Galvez Trigo, M.J., & Mortara, L. (2023) Augmented Reality to Reduce Cognitive Load in Operational Decision-Making. Augmented Cognition. HCII 2023. Lecture Notes in Computer Science, vol. 14019, pp. 328-346. Springer, Cham.
Taylor, N.P., & Cunniffe, N.J. (2023) Coupling machine learning and epidemiological modelling to characterise optimal fungicide doses when fungicide resistance is partial or quantitative. Journal of the Royal Society Interface, 20(201), ISSN: 1742-5662.
Katiyar, S.A., Lee, L., Iida, F., & Nurzaman, S.G. (2023) Energy Harvesting for Robots with Adaptive Morphology. Soft Robotics, 10(2), pp. 365-379.
Clawson, G. (2023) A Technology Readiness Level for Blockchain. In: The 38th ACM/SIGAPP Symposium On Applied Computing, 27-31 March 2023, Tallinn Estonia.
Pietschmann, L., Bohné, T., & Tsapali, M. (2023) Extended Reality Visual Guidance for Industrial Environments: A Scoping Review. 2022 IEEE 3rd International Conference on Human-Machine Systems (ICHMS), Orlando, FL, USA, 2022, pp. 1-6.
Almanzor, E., Ye, F., Shi, J., Thuruthel, T.G., Wurdemann, H.A., Iida, F. (2023) Static Shape Control of Soft Continuum Robots Using Deep Visual Inverse Kinematic Models. IEEE Transactions on Robotics, 39(4), pp. 2973-2988.
Almanzor, E., Thuruthel, T.G., & Iida, F. (2022) Automated Fruit Quality Testing using an Electrical Impedance Tomography-Enabled Soft Robotic Gripper. 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 2022, pp. 8500-8506.
Hughes, J., Abdulali, A., Hashem, R., & Iida, F. (2022) Embodied Artificial Intelligence: Enabling the Next Intelligence Revolution. IOP Conference Series: Materials Science and Engineering, 1261 012001.
Sochacki, G., Hughes, J., and Iida, F. (2022) Sensorized Compliant Robot Gripper for Estimating the Cooking Time of Boil-Cooked Vegetables. International Conference on Intelligent Autonomous Systems, 16, pp. 227-238.
Danno, D., Hauser, S., and Iida, F. (2022) Robotic cooking through pose extraction from human natural cooking using openpose. International Conference on Intelligent Autonomous Systems, 16, pp. 288-298.
Sochacki, G., Abdulali, A., and Iida, F. (2022) Mastication-Enhanced Taste-Based Classification of Multi-Ingredient Dishes for Robotic Cooking. Frontiers in Robotics and AI, 9, pp.108-121.
Thelander, M., Landberg, K., Muller, A., Cloarec, G., Cunniffe, N., Huguet, S., Soubigou-Taconnat, L., Brunaud, V., and Coudert, Y. (2022) Apical dominance control by TAR-YUC-mediated auxin biosynthesis is a deep homology of land plants. Current Biology July 2022.
Thuruthel, T.T., Iida, F. (2022) Multimodel Sensor Fusion for Learning Rich Models for Interacting Soft Robots. arXiv:2205.04202v1 [cs.RO].
Aubin, C.A., Gorissen, B., Milana, E., Buskohl, P.R., Lazarus, N., Slipher, G.A., Keplinger, C., Bongard, J., Iida, F., and Lewis, J.A. (2022) Towards enduring autonomous robots via embodied energy. Nature, 602, pp.393-402.
Sochacki, G., Abdulali, A., Cheke, L., and Iida, F.(2022) Theoretical Framework for Human-Like Robotic Taste with Reference to Nutritional Needs. IOP Conference Series: Materials Science and Engineering, 1292.
Wang, H., Thuruthel, T.G., Gilday, K., Abdulali, A., and Iida, F. (2022) Machine Learning for Soft Robot Sensing and Control: A Tutorial Study. 2022 IEEE 5th International Conference on Industrial Cyber-Physical Systems (ICPS), Coventry, United Kingdom, 2022, pp. 01-06.
Costi, L., Maiolino, P., and Iida, F. (2022) How the Environment Shapes Tactile Sensing: Understanding the Relationship between Tactile Filters and Surrounding Environment. Frontiers in Robotics and AI, July 2022, pp.180.
Bücker, C., Geissdoerfer, M., and Kumar, M. (2022) 100 practices to foster consumer acceptance in the circular economy. R&D Management Conference 2021: Innovation in an Era of Disruption. Glasgow, Scotland.
Chen, X., Lawrence, J.M., Wey, L.T., Schertel, L., Jing, Q., Vignolini, S., Howe, C.J., Kar-Narayan, S., and Zhang, J.Z. (2022) 3D-printed hierarchical pillar array electrodes for high-performance semi-artificial photosynthesis. Nature Materials, 21, pp.811-818.
Sadati, H., ElDiwiny, M., Nurzaman, S.G., Iida, F., and Nanayakkara, T. (2021) Embodied Intelligence & Morphological Computation in Soft Robotics Community: Collaborations, Coordination, and Perspective. Embodied Intelligence. IPO Conference Series: Materials Science and Engineering, 1261 01005.
Gielis, J., Shankar, A., and Prorok, A. (2022) A Critical Review of Communications in Multi-Robot Systems. arXiv:2206.09484 [cs.RO].
Ho, W.R., Tsolakis, N., Dawes, T., Dora, M., and Kumar, M. (2022) A Digital Strategy Development Framework for Supply Chains. IEEE Transactions on Engineering Management, 70(7), pp. 2493-2506, July 2023.
Thelander, M., Landberg, K., Muller, A.R.J., Cloarec, G., Cunniffe, N., Huguet, S., Soubigou-Taconnat, L., Brunaud, V., and Coudert, Y. (2022) Apical and basal auxin sources pattern shoot branching in a moss, Cold Spring Harbor Laboratory. bioRxiv.
Moencks, M., Roth, E., Bohné, T., Romero, D., and Stahre, J. (2022) Augmented Workforce Canvas: a management tool for guiding human-centric, value-driven human-technology integration in industry. Computers & Industrial Engineering, 163, ISSN 0360-8352.
Brion, D.A.J., Shen, M., and Pattinson, S.W. (2022) Automated recognition and correction of warp deformation in extrusion additive manufacturing. Additive Manufacturing. 56.
Pattinson, S., and Brion, D.A.J. (2022) Automated Recognition and Correction of Warp Deformation in Extrusion. Additive Manufacturing. Volume 56, August 2022, 102838.
Brintrup, A., Kosasih, E.E., MacCarthy, B.L., and Demirel, G. (2022) Digital supply chain surveillance: concepts, challenges, and frameworks. The Digital Supply Chain, pp.379-396.
Ogbeide, O., Bae, G., Yu, W., Morrin, E., Song, T., Song, W., Li, Y., Su, B., An, K., and Hasan, T. (2022) Inkjet‐Printed rGO/binary Metal Oxide Sensor for Predictive Gas Sensing in a Mixed Environment. Advanced Functional Materials, 32(25).
Prorok, A., Kumar, V., Sadler, B., and Sukhatme, G. (2022) Introduction to the Special Section on Resilience in Networked Robotic Systems. IEEE Transactions on Robotics, 38(1).
Sochacki, G., Hughes, J., & Iida, F. (2022) Sensorized Compliant Robot Gripper for Estimating the Cooking Time of Boil-Cooked Vegetables. In: Ang Jr, M.H., Asama, H., Lin, W., Foong, S. (eds) Intelligent Autonomous Systems 16. IAS 2021. Lecture Notes in Networks and Systems, vol 412. Springer, Cham.
Tsai, C., Ahn, J.M., and Mortara, L. (2022) Managing platform-based ecosystems in B2B markets–out-bound open innovation perspective. International Journal of Technology Management, 89(3-4), pp.139-162.
Calcagno, V., Cunniffe, N.J., Hamelin, F.M. (2022) Metacommunity dynamics and the detection of species associations in co‐occurrence analyses: Why patch disturbance matters. Functional Ecology, 36(6), pp.1483-1499.
Baikie, T.K., Wey, L.T., Medipally, H., Reisner, E., Nowaczyk, M.M., Friend, R.H., Howe, C.J., Schnedermann, C., Rao, A., and Zhang, J.Z. (2022) Photosynthesis re-wired on the pico-second timescale. arXiv:2201.13370 [physics.bio-ph].
Murray-Watson, R.E., and Cunniffe, N. (2022) Tolerant crops increase growers’ yields but promote selfishness: how the epidemiology of disease resistant and tolerant varieties affect grower behaviour. bioRxiv.
Kosasih, E.E., Margaroli, F., Gelli, S., Aziz, A., Wildgoose, N., and Brintrup, A. (2022) Towards knowledge graph reasoning for supply chain risk management using graph neural networks. International Journal of Production Research.
Prorok, A., Malencia, M., Carlone, L., Sukhatme, G.S., Sadler, B.M., & Kumar, V. (2021) Beyond Robustness: A Taxonomy of Approaches towards Resilient Multi-Robot Systems. arXiv:2109.12343v1 [cs.RO].
Sochacki, G., Hughes, J., Hauser, S., & Iida, F. (2021) Closed-Loop Robotic Cooking of Scrambled Eggs with a Salinity-based ‘Taste’ Sensor. 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 2021, pp. 594-600.
Balcerowicz, M., Shetty, K.N., & Jones, A.M. (2021) O auxin, where art thou? Nature Plants, 7, pp. 546–547.
Rizza, A., Tang, B., Stanley, C.E., Grossmann, G., Owen, M.R., Band, L.R., & Jones, A.M. (2021) Differential biosynthesis and cellular permeability explain longitudinal gibberellin gradients in growing roots. Proceedings of the National Academy of Sciences, 118(8).
Howard, T., Prorok, A., & Kress-Gazit, H. (2020) Guest Editorial: Robotics: Science and Systems 2018 (RSS 2018). Autonomous Robots, 44, pp. 1287-1288.
University of East Anglia
Bennett, J., & Finlayson, G.D. (2024) Simplifying Tone Curves for Image Enhancement, Pre-print.
Rogers, H., De La Iglesia, B., & Zebin, T. (2023) Evaluating the Use of Interpretable Quantized Convolutional Neural Networks for Resource-Constrained Deployment, Proceedings of the 15th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, 1, pp.109-120.
Gudelis, M., Mackiewicz, M., Bremner, J., Fielding, S. (2023) Computer Vision Pipeline for Automated Antarctic Krill Analysis, arXiv pre-print.
Rogers, H., De La Iglesia, B., Zebin, T., Cielniak, G., Magri, B. (2023). An Agricultural Precision Sprayer Deposit Identification System, 2023 IEEE 19th International Conference on Automation Science and Engineering (CASE), Auckland, New Zealand, 2023, pp. 1-6.
Rogers, H., De La Iglesia, B., Zebin, T., Cielniak, G., Magri, B. (2023). An Automated Precision Spraying Evaluation System. Towards Autonomous Robotic Systems. TAROS 2023: Lecture Notes in Computer Science, 14136, pp. 26–37. Springer, Cham.
Hobley, B., Mackiewicz, M., Bremner, J., Dolphin, T., & Arosio, R. (2023) Crowdsourcing experiment and fully convolutional neural networks for coastal remote sensing of seagrass and macro-algae. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (Early Access), pp. 1-13.
Game, C.A., Thompson, M.B., & Finlayson, G.D. (2023) Weibull Tone Mapping (WTM) for the Enhancement of Underwater Imagery. Sensors 2023, 23(7), 3533.
Fearne, A., & Wagner, B. (2022) Value chain analysis: a diagnostic tool for building sustainable supply chains. In: Childe, S., & Anabela, S. (eds.) Handbook of Research Methods for Supply Chain Management. Edward Elgar Publishing, 18 Oct 2022. pp. 368.
Fisher, M., French, G., Gorpincenko, A., Holah, H., Clayton, L., Skirrow, R., & Mackiewicz, M. (2022) Motion stereo at sea: Dense 3D reconstruction from image sequences monitoring conveyor systems on board fishing vessels. IET Image Processing, 17(2), pp. 349-361.
Didonet, S.R., & Fearne, A. (2022) The impact of market information use on entrepreneurial performance: insights from the UK food industry. Journal of Small Business and Enterprise Development. ISSN: 1462-6004.
Alkhudaydi, T., & De La Iglesia, B. (2022) Counting spikelets from infield wheat crop images using fully convolutional networks. Neural Computing and Applications, 34(20), pp. 17539-17560.
Alahamade, W., Lake, I., Reeves, C. E., & De La Iglesia, B. (2022) A multi-variate time series clustering approach based on intermediate fusion: A case study in air pollution data imputation. Neurocomputing, 490, pp. 229-245.
Fearne, A., Borzino, N., De La Iglesia, B., Moffatt, P., & Robbins, M. (2022) Using supermarket loyalty card data to measure the differential impact of the UK soft drink sugar tax on buyer behaviour. Journal of Agricultural Economics, 73(2), pp. 321-337.
Deeb, R., & Finlayson, G. D. (2022) Locus filters. Optics Express, 30(8), pp. 12902-12917.
Alahamade, W., Lake, I., Reeves, C., & De La Iglesia, B. (2021) Evaluation of multi-variate time series clustering for imputation of air pollution data. Geoscientific Instrumentation, Methods and Data Systems, 10, pp. 265-285.
Game, C. A., Thompson, M. B., & Finlayson, G. D. (2021) Chromatic Weibull Tone Mapping for Underwater Image Enhancement. Proceedings of the International Colour Association Congress, pp. 239-244.
Hobley, B., Arosio, R., French, G., Bremner, J., Dolphin, T. and Mackiewicz, M. (2021). Semi-Supervised Segmentation for Coastal Monitoring Seagrass Using RPA Imagery. Remote Sensing, 13 (9). ISSN 2072-4292
Gorpincenko, A., French, G., Knight, P., Challis, M., & Mackiewicz, M. (2021) Improving automated sonar video analysis to notify about jellyfish blooms. IEEE Sensors Journal, 21(4), pp. 4981-4988.
Blackwell, R.E., Harvey, R., Queste, B.Y. and Fielding, S. (2020). Colour maps for fisheries acoustic echograms. ICES Journal of Marine Science, 77 (2). 826–834. ISSN 1054-3139
Occhibove, F., Chapman, D.S., Mastin, A.J., Parnell, S.S.R., Agstner, B., Mato-Amboage, R., Jones, G., Dunn, M., Pollard, C.R.J., Robinson, J.S., Marzano, M., Davies, A.L., White, R.M., Fearne, A., and White, S.M. (2020). Eco-epidemiological uncertainties of emerging plant diseases: The challenge of predicting Xylella fastidiosa dynamics in novel environments. Phytopathology, 110(11): 1740–1750. November 2020.
French, G., Mackiewicz, M., Fisher, M., Holah, H., Kilburn, R., Campbell, N. and Needle, C. (2020). Deep neural networks for analysis of fisheries surveillance video and automated monitoring of fish discards. ICES Journal of Marine Science, 77 (4). 1340–1353. ISSN 1054-3139
Colmer, J., O’Neill, C.M., Wells, R., Bostrom, A., Reynolds, D., Websdale, D., Shiralagi, G., Lu, W., Lou, Q., Cornu, T.L., Ball, J., Renema, J., Andaluz, G.F., Benjamins, R., Penfield, S., and Zhou, J. (2020). SeedGerm: a cost effective phenotyping platform for automated seed imaging and machine learning based phenotypic analysis of crop seed germination. New Phytologist, 228(2): 778–793. October 2020.
Bauer, A., Bostrom, A.G., Ball, J., Applegate, C., Cheng, T., Laycock, S., Rojas, S.M., Kirwan, J. and Zhou, J. (2019). Combining computer vision and deep learning to enable ultra-scale aerial phenotyping and precision agriculture: A case study of lettuce production: AirSurf-Lettuce. Horticulture Research, 2019 (6). pp. 1-12. ISSN 2052-7276
Alkhudaydi, T., Reynolds, D., Griffiths, S., Zhou, J. and De La Iglesia, B. (2019). An Exploration of Deep-Learning Based Phenotypic Analysis to Detect Spike Regions in Field Conditions for UK Bread Wheat. Plant Phenomics, 2019 (July). pp. 1-17. ISSN 2643-6515
Please see below publications within related sectors, by AgriFoRwArdS CDT Staff and Students, published since the set up of the CDT.